
Web Dev Day 4:
JS & Recap

Website Development
UBC | Coding Pals

JavaScript Syntax
- SOMEWHAT similar to CSS
- Curly bracket language
- Needs semicolons after each line except after curly brackets

What is a variable?

- A variable is a way for us to store a value, which can also be changed or
modified later

Three ways to define variables:

- Var (not preferred)
- Let
- Const

Variables

Data Types
A data type refers to what kind of data is being stored in a variable

Examples of data types:

- Number
- String
- Boolean (true/false)
- Null

Variables are dynamically typed in JavaScript, meaning that they can change from
one data type to another after being defined (unless const)

JavaScript Operators
● + : Addition
● - : Subtraction
● * : Multiplication
● / : Division
● ** : Exponential
● % : Modulus
● ++ : Increment (Add by 1)
● -- : Decrement (Subtract by 1)
● = : Assign

If-Else Statements
If-else statements come in handy when you need to run conditional logic

- Checking equality (==) vs. strict equality (===)

Syntax example:

Scope (Global vs Local)
If you define variables in a local scope (ex. within an if statement), you cannot call
them in a wider scope

Ex:

if (variable === true){

let x = 5; // defining a variable here

}

console.log(x); // will not run, because the variable ‘x’ is not defined in this scope

Functions
Functions are used to avoid repeating code

Defined by:

function functionname(){

// code inside the function goes here

}

Functions can return values or print data or change some information

Calling a Function from HTML
Function defined in JS:

Calling the function in HTML:

HTML Recap

HTML Syntax
- Opening & closing tags (<> </>)
- Always contains:

- <!DOCTYPE html>
- Opening & closing <html> tags

- Indented tags (for readability)
- Child & Sibling tags
- Order of sibling tags matters
- Attributes

HTML Head Section
- Meta tags
- Title tags
- Link tags
- Additional attributes & properties

Anchor (Hyperlink) Tags
- Denoted with the <a> tag
- Used to link to different websites (also can

link to images, but not very common)
- Can nest other tags
- Href attribute

- Href must start with ‘https://’
- Target attribute

Single Tags
Breaks, horizontal rule

<hr>

No closing tag (</>)

Lists
- Unordered () vs. Ordered ()
- Individual elements denoted by
- Attribute to define type of ordering
- Notice the indents

Unordered List: Ordered List:

Images
● Denoted with the tag (single tag,

no need for closing tag)
● Attributes:

○ Src (source)
○ Alt (alternative link)
○ Width & height (html considers aspect ratios)

Images need to be referenced with a path

Create a folder named “images” under the
main folder directory

Videos
● Denoted with the <video> tag
● Attributes

○ Src (source; can define multiple and the browser will play the first one that is compatible)
○ Controls (gives the option to play, pause, etc.)
○ Width & height
○ Poster (thumbnail of a video)
○ Autoplay
○ Loop

● Like images, videos must be referenced by a path
● Optional text between opening and closing <video> tags to display a message

if none of the src videos are compatible

YouTube Videos/ iFrame
iFrame is essentially an webpage embedded inside
another page. And iFrame is also the easiest way
to embed a Youtube video into a webpage.

<iframe src=”source” title=”description”></iframe>

Tables
The syntax for table is very
similar to the syntax for a list,
but there are a few more
elements.

For an example code for the
table element, refer to next
slide.

Table Syntax
<table>

<thead>
<tr>

<th scope="col">Name</th>
<th scope="col">Age</th>
<th scope="col">Occupation</th>

</tr>
</thead>
<tbody>

<tr>
<td>Gary</td>
<td>17</td>
<td>Student</td>

</tr>
<tr>

<td>Davis</td>
<td>17</td>
<td>Student</td>

</tr>
</tbody>

</table>

Divs and Spans
● Inline vs Block elements

○ <a> is an example of inline,
<p> is an example of block

● Divs are for block
elements while Spans are
for inline elements

● Divs and spans define
“sections” of HTML to
group it all under one
category

IDs and Classes
IDs and Classes are used to assign an identifier to an HTML tag

Referenced when styling specific elements

● IDs can only be used once
● Classes can be used for multiple tags

Will go more into detail for CSS

CSS Recap

Directories and Relative Paths
To access files within the same system, we can use
paths instead of https links

To access the picture.pdf file from current.html, we
can:

● href=”picture.pdf”
● href=”/images/picture.pdf”
● href=”../images/picture.pdf”

Notice how “/images/picture.pdf” is different from
“images/picture.pdf”

Element Selector
In CSS, you can select an entire type of
elements to make changes on. For example,
you can select the <p> element and change
its attributes, which will cause all <p>
elements in that webpage to be altered.

p {

color: blue;

}

Note: the “*” selector targets all elements in
the HTML document

Targeting Specific IDs and Classes
We can also target IDs and Classes to style

- This is why it is important to give HTML tags IDs and Classes

. and #

● Use a “.” before the class name to target a class
● Use a “#” before the ID name to target an ID

It is also possible to assign one element to multiple classes.

Colours
.classname {

/* the three following lines do the same thing */

color: red;

color: rgb(255,0,0);

color: #ff0000

}

Can also define background colours with “background-color”

Use RGBA to define an opacity value at the end [ex: rgba(255,0,0,0.5)]

Text
Text can be customized in many different way using CSS!

Some example of properties that we can play around with are:

● color
● background-color
● text-align
● text-decoration
● text-transform
● letter-spacing

Width and Height
Certain tags need widths and heights defined

We can define width and height in two ways:

1. Absolute units: px, cm, etc. (do not add a space between the number and the
unit)

2. Relative units:
a. Rem: relative to the font size of the root element
b. Em: relative to the font size of the element

Box Model (Padding, Border, Margin)

Display & Justify Content
Display lets us manipulate the positioning and placement of
elements

We can change inline elements to block and block elements to
inline

By using “display: flex” we can change spacing with the “justify-
content” property as shown below in the following ways:

I. flex-start = Default value. Items are positioned at the
beginning of the container

II. flex-end = Items are positioned at the end of the container
III. center = Items are positioned in the center of the container
IV. space-between = Items will have space between them
V. space-around = Items will have space before, between, and

after them
VI. space-evenly = Items will have equal space around them

Align Items
Another useful attribute with flex displays is called
align-items

For all the elements in your div they need to be
aligned

Options:

I. flex-start = Align everything to the top
II. flex-end = Align everything to the bottom
III. center = Align everything in the center
IV. stretch = Stretches everything to top & bottom
V. baseline = Align texts to be on the same level

Position
● Static
● Relative

○ top, bottom, left, right

● Absolute
● Fixed
● Sticky
● Z-index

Absolute vs. Fixed vs. Sticky

Resources
MDN Web Docs

“Dictionary” for HTML, CSS, & JS

https://developer.mozilla.org/

W3 Schools

Modules that explain all the
components

https://w3schools.com/

https://developer.mozilla.org/
https://www.w3schools.com/

